Analysis of the acidic proteome with negative electron-transfer dissociation mass spectrometry.

نویسندگان

  • Graeme C McAlister
  • Jason D Russell
  • Neil G Rumachik
  • Alexander S Hebert
  • John E P Syka
  • Lewis Y Geer
  • Michael S Westphall
  • David J Pagliarini
  • Joshua J Coon
چکیده

We describe the first implementation of negative electron-transfer dissociation (NETD) on a hybrid ion trap-orbitrap mass spectrometer and its application to high-throughput sequencing of peptide anions. NETD, coupled with high pH separations, negative electrospray ionization (ESI), and an NETD compatible version of OMSSA, is part of a complete workflow that includes the formation, interrogation, and sequencing of peptide anions. Together these interlocking pieces facilitated the identification of more than 2000 unique peptides from Saccharomyces cerevisiae representing the most comprehensive analysis of peptide anions by tandem mass spectrometry to date. The same S. cerevisiae samples were interrogated using traditional, positive modes of peptide LC-MS/MS analysis (e.g., acidic LC separations, positive ESI, and collision activated dissociation), and the resulting peptide identifications of the different workflows were compared. Due to a decreased flux of peptide anions and a tendency to produce lowly charged precursors, the NETD-based LC-MS/MS workflow was not as sensitive as the positive mode methods. However, the use of NETD readily permits access to underrepresented acidic portions of the proteome by identifying peptides that tend to have lower pI values. As such, NETD improves sequence coverage, filling out the acidic portions of proteins that are often overlooked by the other methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enrichment and analysis of nonenzymatically glycated peptides: boronate affinity chromatography coupled with electron-transfer dissociation mass spectrometry.

Nonenzymatic glycation of peptides and proteins by d-glucose has important implications in the pathogenesis of diabetes mellitus, particularly in the development of diabetic complications. However, no effective high-throughput methods exist for identifying proteins containing this low-abundance post-translational modification in bottom-up proteomic studies. In this report, phenylboronate affini...

متن کامل

Analysis of the trypanosome flagellar proteome using a combined electron transfer/collisionally activated dissociation strategy.

The use of electron-transfer dissociation as an alternative peptide ion activation method for generation of protein sequence information is examined here in comparison with the conventional method of choice, collisionally activated dissociation, using a linear ion trapping instrument. Direct comparability between collisionally and electron-transfer-activated product ion data were ensured by emp...

متن کامل

Large Scale Discovery and De Novo-Assisted Sequencing of Cationic Antimicrobial Peptides (CAMPs) by Microparticle Capture and Electron-Transfer Dissociation (ETD) Mass Spectrometry.

The identification and sequencing of novel cationic antimicrobial peptides (CAMPs) have proven challenging due to the limitations associated with traditional proteomics methods and difficulties sequencing peptides present in complex biomolecular mixtures. We present here a process for large-scale identification and de novo-assisted sequencing of newly discovered CAMPs using microparticle captur...

متن کامل

Negative-ion electron capture dissociation: radical-driven fragmentation of charge-increased gaseous peptide anions.

The generation of gaseous polyanions with a Coulomb barrier has attracted attention as exemplified by previous studies of fullerene dianions. However, this phenomenon has not been reported for biological anions. By contrast, electron attachment to multiply charged peptide and protein cations has seen a surge of interest due to the high utility for tandem mass spectrometry (MS/MS). Electron capt...

متن کامل

Proteome analysis of Cryptosporidium parvum and C. hominis using two-dimentional electrophoresis, image analysis and tandem mass spectrometry

Until recently, Cryptosporidium was thought to be a single species genus. Molecular studies now showthat there are at least 10 valid species of this parasite. Among them, two morphologically identical species, C.hominis and C. parvum are the most pathogenic identified to date and share 97% of identical genomes.Post-genomic analyses is therefore necessary to explore further the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Analytical chemistry

دوره 84 6  شماره 

صفحات  -

تاریخ انتشار 2012